
A Survey on Service Integrity in Software as a
Service

Gohila Priyadharshini.C#1, Mohana.S*2

#1PG scholar, Computer Science Department, *2 Assistant Proffesor,
M.I.E.T.Engineering college,

Trichy ,India

Abstract─ A cloud computing is the recently emerging
technology which can provide many service based on “pay as
you go” way that can be accessed through internet. The
services provided by the cloud are software as a service
(SaaS), platform as a service (PaaS), infrastructure as a
service (IaaS). Software as a service can provide their
applications from the application service provide through
massive cloud computing environment. Due to the sharing
nature ,it is vulnerable to malicious attacker. To identify the
malicious ,there are many techniques that can be compared
through the survey with and without any special hardware or
kernel support.

Keywords─ cloud computing, saas, service integrity
attestation.

I. INTRODUCTION
 In recent days the cloud computing technology is popular
because it is an attracting technology in the field of
computer science. Cloud computing is internet base
computing that usually referred the shared configurable
resources is provided with computers and other devices as
services. Cloud computing delegate services with a
customer’s data, software and computation over a network.
The customer of the cloud can get the services through the
network. In other words, users are using or buying
computing services from others. Cloud can provide
Anything as a Service (AaaS).
 Many service model are provided by the cloud they are
IaaS,SaaS and PaaS.Infrastructure as a service (IaaS) offer
computers physical or virtual machines and other resources.
Infrastructure as a service (IaaS) clouds often offer
additional resources such as a virtual-machine disk
image library, raw block storage, and file or object storage,
firewalls, load balancers, IP addresses, virtual local area
networks (VLANs), and software bundles. Infrastructure as
a service (IaaS) cloud providers supply these resources on-
demand from their large pools installed in data centers.
 In the Platform as a service (PaaS) models, cloud
providers deliver a computing platform, typically including
operating system, programming language execution
environment, database, and web server. Application
developers can develop,run their software solutions on a
cloud platform without the cost complexity of buying and
managing the underlying hardware,software layers. With
some Platform as a service (PaaS) offers like Microsoft
Azure and Google App Engine, the underlying computer
and storage resources scale automatically to match

application demand so that the cloud user does not have to
allocate resources manually.
 This paper concentrate on software as a service. It is
a software licensing and delivery model in which software
is licensed on a subscription basis and is centrally hosted.
Sometimes referred to as "on-demand software". Software
as a service (SaaS) is typically accessed by users using
a thin client via a web browser. Software as a
service (SaaS) has been incorporated into the strategy of all
leading enterprise software companies. One of the biggest
selling points for these companies is the potential to reduce
Information Technology (IT) support costs by outsourcing
hardware and software maintenance and support to the
Software as a service (SaaS) provider. The vast majority of
SaaS solutions are based on a multi-tenant architecture. To
support scalability, the application is installed on multiple
machines (called horizontal scaling). In some cases, a
second version of the application is set up to offer a select
group of customers with access to pre-release versions of
the applications (e.g., a beta version) for testing purposes.
And contrasted with traditional software, where multiple
physical copies of the software each potentially of a
different version, with a potentially different configuration,
and often customized are installed across various customer
sites. While an exception rather than the norm, some
Software as a service (SaaS) solutions do not use multi-
tenancy, or use other mechanisms such as virtualization to
cost-effectively manage a large number of customers in
place of multi-tenancy. Whether multi-tenancy is a
necessary component for software-as-a-service is a topic of
controversy.
 Some limitations slow down the acceptance of Software
as a service (SaaS) and prohibit from being used in some
cases:
 Since data are being stored on the vendor’s servers,

data security becomes an issue.
 Software as a service (SaaS) applications are hosted in

the cloud, far away from the application users. And
introduces latency into the environment; so, for
example, the Software as a service (SaaS) model is not
suitable for applications that demand response times in
the milliseconds.

 Multi-tenant architectures, which drive cost efficiency
for SaaS solution providers, limit customization of
applications for large clients, inhibiting such
applications from being used in scenarios (applicable

Gohila Priyadharshini.C et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8205-8209

www.ijcsit.com 8205

mostly to large enterprises) for which such
customization is necessary.

 Some business applications require access to or
integration with customer's current data. When such
data are large in volume or sensitive (e.g., end users'
personal information), integrating them with remotely
hosted software can be costly or risky, or can conflict
with data governance regulations.

 Constitutional search warrant laws do not protect all
forms of Software as a service (SaaS) dynamically
stored data. The end result is that a link is added to the
chain of security where access to the data, and, by
extension, misuse of these data, are limited only by the
assumed honesty of 3rd parties or government agencies
able to access the data on their own recognizance.

 Switching Software as a service (SaaS) vendors may
involve the slow and difficult task of transferring very
large data files over the Internet.

 Organizations that adopt SaaS may forced into
adopting new versions, which might result in
unforeseen training costs or an increase in probability
that a user might make an error.

Relying on an Internet connection means that data are
transferred to and from a SaaS firm at internet speeds,
rather than the potentially higher speeds of a firm’s internal
network.
 Although confidentiality and privacy protection
problems have been extensively studied by previous
research [6],[7],[8],[9],[10], the service integrity will be
discussed in this paper. The rest of the paper is organized as
follows: Section 2 presents a techniques available for
checking a service integrity. Section 3 provides the types of
malicious attacker. Section 4 describes the comparative
study.

II. TECHNIQUES FOR VERIFYING SERVICE
INTEGRITY

 In this paper, we will provide a broad overview of the
different techniques for verifying the service integrity. We
will provide a broad view of the major algorithms
available for each method, and the variations on the
different techniques. We will also discuss a combination of
different concepts.
1)The BIND Technique
 In this section, we will discuss the BIND (Binding
information and data)method for the verification of the
integrity of services provided by the SaaS cloud system
model. It consist of the fine grained attestation framework .
It can provide the verification through the secure kernel or
third party Auditor.
 BIND offers the following properties:1)It attest
only to the piece of code we are concerned about. 2) It
narrows the gap between time of attestation and time of
use. And measures a piece of code immediately before it is
executed then uses a sand-boxing mechanism to protect the
execution of the attested code.3) It ties the code attestation
with data that the code produce ,such that we can pinpoint
what code has been run to generate that data.

1.1) Attestation Annotation Mechanism
 In this mechanism ,the programmer allowed to identify
and annotate the beginning and end of this critical piece of
code and every time this piece of code is executed. And this
can be validated by checking and verifying checksum
value.

1.2 SandBox Mechanism
 In this ,the execution of the critical code will be
preserved. An integrity proof for a piece of the input data
into the integrity statement of the code and output data.
This enable us to achieve transitive integrity verification
with constant overhead i.e.,we only need to verify one
signature to guarantee the integrity of the entire chain of
process that transformed the data.

1.3) Verification Of Authenticator Through Hash
 It consist of two steps to verify: 1) verify the signature,
2) verify the hash. Since verifying the signature is
straightforward , we now explain how to verify the hash
and how to enable different software version and software
upgrades. BIND allows the application to register one or
more legal hash values. We assume that for each
application’s trusted authority that signs certificate for legal
hash values. When an application registers a hash value ,it
has to show a correct certificate. The public key of an
applications trusted authority is included whenever BIND
supports various software versions and software upgrades.

1.4 Conclusion
 This BIND system uses the Diffee-Hellman key
exchange for providing the integrity attestation.
The existing system of this system is TCG style framework,
it uses the coarse grain attestation where it provide
attestation for the entire operating system.
In this remote verification is difficult and the software will
be compromised at runtime. Then next system is COPILOT
system framework where it miss the short lived intrusion.
Hence these things can be overcome through the BIND
system.

 2) The TEAS Technique
 A software scheme for protecting the integrity of
computing platforms using Timed Executable Agent
Systems(TEAS). A trusted challenger issues an
authenticated challenge to a perhaps corrupt responder. A
new is that the issued challenge is an executable program
that can potentially compute any function on the responder.
The responder must compare not only the correct value
implied by the agent, but also must complete this
computation within time bounds prescribed by the
challenger. It also need some third party auditor to verify
the integrity.
 The algorithm used here is agent generation and
verification algorithm. In this both agent and the client
generate the checksum value. The generated checksum of
client and agent’s checksum will be compared then verified
by the auditor.
 It consist of two adversaries 1) on-line adversaries, 2)
off-line adversaries.

Gohila Priyadharshini.C et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8205-8209

www.ijcsit.com 8206

2.1) Off-Line Adversaries
 In this class we assume that the adversary controlling a
client will try to analyze the incoming programs without
running them. Recall that in static analysis of program, it
can be analyzed in isolation , without inputs and without
the state of the machine where they will run. An off-line
adversaries will perform a similar type of analysis, except
that it might also have access to inputs and state of the
client.

2.2) On-Line Adversaries
 In this class we assume that the adversary controlling a
client will also be able to run the incoming programs.

2.3)Conclusion
 Finally it can verify the service integrity with the help of
third party auditor or secure kernel .
The existing system of Timed executable Agent
System(TEAS) is verifies the agent through the genuinity
system. It also uses the checksum composition. This system
is corrupted by the substitution attack. After that this
drawback can be overcome through the SWATT system
and this system is tightly coupled between target system
and trusted host. And then it needs some large memory to
access is (O(n log n)). So these drawbacks can overcome
through the TEAS system.

3)The RunTest Technique
 This technique provide a scalable runtime integrity
attestation framework. To assure that the integrity of data
flow processing in cloud it provides a light weight
application level attestation methods.
To identify the untruthful data flow processing results and
pinpointing malicious data processing service provider and
finally detect a colluding attack behavior.

3.1) Generation of Integrity Attestation Graph
 The malicious can be determined through Integrity
Attestation Graph. To capture the aggregated cross node
integrity attestation results. It also includes the statistical
output of consistency and inconsistency information from
different data flow processing nodes. It uses the Bron-
Kerbosch(Bk) Clique finding algorithm for finding the
consistency cliques in the attestation graph.
Proposition 1:
 All benign service provider always form the consistency
clique in the integrity attestation graph.
Proposition 2:
 Any node that is outside of all maximal cliques of size
larger than [k/2] in a per-function attestation graph must be
a malicious node.

3.2)Security Analysis
 Our scheme of pinpointing malicious service provider is
based on attestation graph analysis. We claim that the
scheme preserves the following properties:
Property 1: No false positive: A benign service provider
will not be pinpointed as malicious.

Property 2: Non-Repudiation: For any pinpointed
malicious service provider ,the trusted portal node can
present evidence to prove it is malicious

3.3) Data Quality
 It define data quality as the percentage of proposed data
with correct results. This scheme can detect the tempered
data results probabilistically and report data quality close to
actual data quality.

Qr =1-(c/n)
Qr be the data quality and 1-(c/n) be the actual quality.

3.4)Conclusion
 Hence this technique can provide the good service
provider and also determine malicious behavior. It provide
non-repudiation and its demerit is low performance.

4) The AdapTest Technique
 This presents a novel adaptive data driven runtime
service integrity attestation framework for Multitenant
cloud system. It can significantly reduce attestation
overhead and shorten delay by adaptively selecting attested
node based on dynamically derived trust scores. It treats the
attested service as a Black Boxes and does not impose any
special hardware or software requirements on the cloud
system or application service provider.

4.1)Generation of Weighted Attestation Graph
 This graph will provide the trust score for a single node
or a pair node.
Definition 1: A weighted Attestation graph is an un-
directed graph consisting of all functionality equivalent
service instances as nodes. The weight of each edge consist
of a pair of counters denoting the number of consistent
results respectively.

 Definition 2: The trust score of the node Si, is defined by
αi , is defined as the fraction of consistent results returned
by the node Si when attested with all the other nodes. Node
trust scores range within [0,1] and are initialized to be 1.

Definition 3: The pairwise trust score between two services
instances Si and Sj, denoted by β(i,j),is calculated by the
fraction of consistent results when Si is attested against Sj .
the pairwise trust score ranges within[0,1] and are
initialized to be -1, which means that Si and Sj have not
been attested with each other yet.

A. Per-Hop Adaptive attestation :
 In this ,the attestation will be provided through clique
based algorithm. Initially it selects the suspicious nodes
that have low trust scores and attest those suspicious node
more frequently.
B. Multi-Hope Attestation:
 It also provide the attestation through clique based
algorithm. Complicated data processing services often from
comprise multiple data processing functions called service
hops. Malicious attacker can attack any of the service hops
to compromise the final data processing results.

Gohila Priyadharshini.C et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8205-8209

www.ijcsit.com 8207

4.2)Conclusion
 Finally from the experimental results , it will reduce the
attestation overhead by upto 60% and the detection reduced
by 40% compared to the previous approach. And it does
not need any third party auditor as the previous system.
Hence it can provide the better result to the user and it does
not provide 100% detection of malicious node.

5)The IntTest Technique
 This technique provides the novel integrated attestation
graph analysis scheme that can provide a stronger attacker
pinpointing power than the previous schemes. It can
automatically enhance the result quality by replacing the
bad results. This can achieve higher attacker pinpointing
accuracy than existing approaches.

5.1) Generation of Integrity Attestation Graph
 It consist of two attestation graph , 1) per-function
consistency and 2) global-function inconsistency.
Definition 1: For two output results r1 and r2 , which come
from two functionality equivalent service providers,
respectively result consistency is defined as either r1= r2

according to user – defined distance function D(r1, r2)falls
within a threshold δ
Definition 2: A per-function consistency graph is an
undirected graph ,with all the attested service provider that
provide the same service function as the vertices and
consistency link as the edge.
Definition 3: The global inconsistency graph is an
undirected graph,with all the attested service provider in
the system as the vertex set and inconsistency link as the
edges.
 This attestation determine the malicious through the
clique finding algorithm. By combining the definition 1 and
2, it can evaluate the malicious service provider without
using the third party auditor or secure kernel.

5.2)Security Analysis
A summary of the result of our analytical study about
IntTest, additional details along with a proof the
proposition presented in this section.
Proposition1:Given an accurate upper bound of the no.of
malicious service providers k , if malicious service
providers always collude together , IntTest has zero false
positive.
 Although the clique finding algorithm cannot guarantee
zero false positive when there are multiple independent
colluding groups, it will be difficult for attackers to escape
the detection with multiple independent colluding groups
since attackers will have inconsistency links not only with
benign node. Additionally,this approach limits the damage
of colluding attacker that can cause if they can evade
detection in two ways. Initially , our algorithm limits the
number of functions which can simultaneously attacked.
Second ,our algorithm ensure a single attacker cannot
participate in compromising an unlimited number of
service functions without being detected.

5.3)Conclusion
 Finally ,this mechanism ca determine the malicious one
without any third party auditor or secure kernel hardware or
software. It limit the attack scope and make difficult to
attack the popular service provider and finally it
automatically replace the bad results with good results.

III. DIFFERENT FORM OF MALICIOUS
ATTACKER IN SERVICE PROVIDER

 In a shared cloud infrastructure ,malicious attacker can
pretend to be legitimate service provider to provide fake
service instance or compromised vulnerable benign service
instance by exploiting their security roles. It consist of
different form of malicious which are described below.
1) Malicious Intermediary
 A malicious intermediary may arbitrarily alter and

inject protocol data. To prevent such attacks, we can
employ cryptographic construction such as message
authentication codes or digital signatures.

2) The Data Misuse Attack
 It uses authenticated protocol data in a malicious way.

For instance , a malicious intermediary can perform a
data suppression attack by effusing to forward any
data. Then the attacker can perform the replay attack
by replaying data that have been authenticated but are
outdated.

3) Malicious process and the Data Falsification Attack
 In a highly adversarial environment , an attacker may

corrupt one or more process in the system. A malicious
process is capable of injection bogus data into
distributed system. We refer to this attack as the data
falsification attack.

4) Non-collusion Always Misbehave(NCAM)
 Malicious component always act independently and

always give incorrect results. It correspond to bi =1 and
ci =0.

5) Non-collusion Probabilistically
Misbehave(NCPM)

 Malicious components always act independently and
give incorrect results probabilistically with probability
less than 1. Different malicious components may have
different misbehaving probability bi . It corresponds to
0< bi <1 and
ci =0.

6) Full time Full Collusion(FTFC)
 Malicious component always collude and always give
the same incorrect results,corresponding to bi =1 and ci

=1.
7) Partial Time Full Collusion(PTFC)
 Malicious components always collude and give the

same incorrect results on selected tuples,
corresponding to 0 < bi < 1 and ci =1.

8) Partial Time Partial Collusion
 Malicious component sometimes collude and

sometimes act independently. It corresponds to 0< bi<1
and 0 < ci<1.

Gohila Priyadharshini.C et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8205-8209

www.ijcsit.com 8208

IV. COMPARISON STUDY
TECHNIQUES MERITS DEMERITS

TCG-style system framework
It use the coarse grain attestation to verify the integrity of
service,where it provide the attestation for entire os.

In this remote verification is difficult and
software will be compromised at runtime.

COPILOT system framework
It also use the same coarse grain attestation to verify
integrity of service provider.

It can miss the short lived intrusions.

BIND system framework
It use the fine grain attestation to verify the integrity of
service ,where it checks the attestation fo particular or
necessary corrupted node only.

It need a third party auditor to verify the
service.

Genuinity system It use the checksum verification for integrity.
This system can be corrupted by the
substitution attack.

SWATT system It overcome the substitution attack.
It needs large memory to access (O(n log
n))

TEAS system Framework
Demerit of both genuinity and SWATT can be overcome.
It automatically generate the agent program

This system also need a secure kernel
hardware or software for verification.

RunTest system framework
It generate integrity attestation graph to verify service
provider.
It provide non-repudiation results.

The performance is low.

AdapTest system framework

It generates the weighted attestation graph to verify the
services. It can reduce the attestation overhead upto 60%
and detection delay upto 40%.

It does not provide 100% detection of
malicious node.

IntTest system framework
It also generate the integrity weighted graph to detect the
malicious.

It replaces the bad service results with the
good service result.

V. CONCLUSION

 This paper, discussed about various approaches and
techniques used in providing the service integrity of
SaaS cloud model. Each techniques has its own
advantages and dis-advantages. Most integrity attacks
can be effectively destroyed by the advanced techniques
and approaches. All methods are approximate to our
goal of providing the service or search results with
integrity,we need to further perfect those approaches or
develop some efficient methods.

REFERENCES
[1] Garay.J and Huelsbergen.L, “Software integrity protection using

timed executable agents,” in Proceedings of ACM Symposium on
Information, Computer and Communications Security (ASIACCS),
Taiwan, Mar. 2006.

[2] Juan Du Daniel J. Dean, Yongmin Tan, Xiaohui Gu, Senior and Ting
Yu Scalable Distributed Service Integrity Attestation for Software-
as-a-Service Clouds .

[3] Du.J, Wei.W, Gu.X, and Yu.T, “Runtest: Assuring Integrity of
Dataflow Processing in Cloud Computing Infrastructures,”

Proc.ACM Symp. Information, Computer and Comm. Security
(ASIACCS),2010.

[4] Du.J, Shah.N, and Gu.X, “Adaptive Data-Driven Service Integrity
Attestation for Multi-Tenant Cloud Systems,” Proc. Int’l Workshop
Quality of Service (IWQoS), 2011. Virtual Computing Lab,
http://vcl.ncsu.edu/, 2013.

[5] Ho et al.T, “Byzantine Modification Detection in Multicast
Networks Using Randomized Network Coding,” Proc. IEEE Int’l
Symp. Information Theory (ISIT), 2004.

[6] Hwang.I, “A Survey of Fault Detection, Isolation, and
Reconfiguration Methods,” IEEE Trans. Control System
Technology, vol. 18,no. 3, pp. 636-653, May 2010.

[7] Lamport.L, Shostak.R, and Pease.M, “The Byzantine Generals
Problem,” ACM Trans. Programming Languages and Systems, vol.
4,no. 3, pp. 382-401, 1982

[8] Shi.E, Perrig.A, and Doorn.L.V, “Bind: A fine-grained attestation
service for secure distributed systems,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2005.

[9] Xu.W, Venkatakrishnan.V. N, Sekar.R, and Ramakrishnan .I. V, “A
framework for building privacy-conscious composite web services,”
in IEEE International Conference on Web Services, Chicago, IL,
Sep. 2006, pp. 655–662.

[10] Zhang.H, Savoie.M,Campbell.S, Figuerola.S, von Bochmann.G, and
Arnaud.B.S, “Service-oriented virtual private networks for grid
applications,” in IEEE International Conference on Web Services,
Salt Lake City, UT, Jul. 2007, pp. 944–951.

Gohila Priyadharshini.C et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8205-8209

www.ijcsit.com 8209

